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In March 2020, the City of San Diego created the Small Business Relief Fund (SBRF) to help small
businesses affected by the economic fallout from the COVID‐19 pandemic. By December 2020, the
City had disbursed nearly USD 17M in grants and loans. Yet demand for funds far exceeded supply:
of the roughly 10,500 applications submitted between March 27 and April 14, funds could only
be extended to 2,327 businesses. This project aims to estimate the effect of funding on business
resilience using quasi‐experimental methods to compare the outcomes of those applicants who
were and were not funded. The current document lays out the methods and data we plan to use to
conduct that analysis.

1 Project Description
Following the closing of the submission portal on April 14, SBRF loans and grants were disbursed in
three phases, each deriving fromdifferent funding sources. At each phase, different eligibility criteria
were applied, and eligible businesses’ applications were processed by prioritizing those applications
that were either submitted first or came from businesses located in low and moderate‐income areas
(LMA).1 A rough outline of the process for grant and loans disbursement is represented on Figure 1
below. The broad timeline of the three phases is as follows.

Phase 1. The first phase of available funding totaled USD 6.2M comprising three sources: 1) USD
550K in City funding for grants of USD 10K (Former Enterprise Zone funding); 2) USD 2.2M in
federal funds for low‐ or zero‐interest loans up to USD 20K (Revolving Loan Fund); and 3) USD 3.4M
in federal funds for forgivable loans (Community Development Block Grant funds). To be eligible,
businesses needed to employ (and retain) between 1 and 100 Full‐Time Equivalent (FTE) employee(s)
(inclusive),2 be located in the City of San Diego, have a City of San Diego business tax certificate that
was valid as of April 15 (the day after the application period closed, have been operational for at least
six months as of March 1, and not have any outstanding bankruptcies, tax liens or legal judgments.
Lending institutions, insurance firms, nonprofits, chain stores, and home‐based businesses were not
eligible.

Phase 2. On April 13, the second phase of funding was made available in the form of USD 700K in
private donations for grants up toUSD11K. These fundswere distributed by a third party, SanDiego
Grantmakers. Eligibility was expanded to include businesses with zero FTEs (i.e., self‐employed
persons) as well as home‐based businesses, though it was restricted to those firms with an annual
revenue of USD 100K or less. Funding priority went to businesses located in underserved areas
targeted for economic development (Opportunity Zone, Promise Zone, Qualified Census Tract, or
Difficult Development Area). Business owner income and the financial hardship experienced by the
business were also taken into account.

Phase 3. On June 9, the CARES act made available USD 13M in funding for grants up to USD
10.5K. These new funds not only increased the size of the overall funding to over USD 19M, but
also expanded the eligibility criteria to include businesses with zero employees, those who had
received other forms of funding (PPP, EIFL, SBA loans), and those with owners that live outside San
Diego. The third phase introduced a tiered structure, whereby grants equaling USD 2,500–10,000
were provided based on the FTE and 2019 annual gross revenue of the business.3

1. Following U.S. Department of Housing and Urban Development (HUD) guidelines, low‐ and moderate‐income areas,
or LMAs, are census tract block groups where 51 percent or more of the residents are low‐ and moderate‐income.
2. An eligible business needed to be retaining at least one FTE during the pandemic restrictions. An owner was not

counted among FTEs.
3. Businesses with: FTE = 0 and 2019 gross revenue (GR19) < 200K received USD 2,500; FTE = 1, GR19 < 500K

received USD 5K; FTE = 5 and GR19 < 1M received USD 7.5K; FTE = 6 and GR19 < 3M received USD 10,000. All
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We are interested in the causal effect of receiving a grant or a loan on business‐level outcomes such
as the ability to generate revenue and remain open. To estimate those effects, we plan to take two
approaches. The first, “Selection on Observables” (SOO), design defines treatment assignment as
a business receiving an invitation from program examiners to submit documents for further review
and treatment itself as receiving funding. We reweight the data by the estimated probability a
business was invited to submit documentation and use instrumental variables regression in order to
estimate the average treatment effect of being awarded funding among those whowould be funded
if invited. In this design, we exploit the fact that we can use the same observable information as
program examiners in order to predict which businesses, among those determined eligible prior to
document review, would be invited to submit documentation for funding. We restrict attention to
phase three of the program, for which we have detailed data on the timing and decisions made
during review.

The second, “Geographic Regression Discontinuity” (GRD), design seeks to estimate the average
effect of being awarded funding local to the City of San Diego boundary, among firms that were
either eligible or that would have been eligible if it were not for their location outside of the City
boundaries. In this design, we exploit the fact that many businesses and people living in the County
of San Diego or the San Diego‐Carlsbad Metropolitan Statistical Area do not understand exactly
where the City of San Diego boundaries lie, and applied to the SBRF despite being geographically
ineligible (see Figure 2).4 We use the entire population of applicant businesses across all phases for
this analysis.

businesses in a Promise Zone, Opportunity Zone, and/or LMA received an additional USD 500 .
4. It should be noted that business owners faced such pandemic‐related economic hardship and, in desparate need of

funding, may have applied for any relief program, regardless of stated criteria. City of San Diego staff noted applicants for
businesses headquartered outside of the City of San Diego, including those that were home‐based, virtual/e‐commerce
or mobile, justified applying for SBRF as a “City of San Diego business” because their customer base and target market
included the City of San Diego consumers.
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Figure 1: Process for reviewing and approving applications to the SBRF.
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Figure 2: Map of businesses who applied for the SBRF. Green businesses are located within the City of San
Diego boundaries, while red businesses are located just outside them. A similar geocoding exercise was
conducted by program staff to determine business eligibility.

2 Data and Data Structure
In this section, we describe the different datasets used in the analysis. There are three broad cate‐
gories: raw data on business‐level outcomes from data providers such as Yelp, Facteus, and PACER;
internal data on grants and loans applications from the Economic Development Department of the
City of San Diego; and the panel and cross‐sectional datasets that result from merging and restruc‐
turing the outcome and application datasets.
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2.1 Datasets on business outcomes
Self‐reported opening status or pivots to remote services
Yelp data on whether the business reports either a permanent or temporary closure helps us to
measure businesses’ attempts to stay open and generate revenue. The Yelp data contains daily
information onwhether the business has permanently or temporarily closed. The data also indicates
whether the business has put up a “virtual services” banner, whether the business has partneredwith
Grubhub to enable delivery, and (possibly) opening hours. At time of writing, it is unclear whether
we will succeed in obtaining the opening hours data due to technical difficulties in the way it is
logged/overwritten.

Bankruptcy
Data on bankruptcy are downloaded from the Southern District of California U.S. Bankruptcy Court
using PACER. The case report files contain a number of fields that describe the disposition of the
case as well as identifiers for the parties. In total, the data contain 199 bankruptcies due to business
debt and 4774 bankruptcies due to consumer debt from January 1 to November 30, 2020. These
will include Chapter 7, Chapter 11, and Chapter 13 consumer and business filings. A recent working
paper shows these follow different trends (Wang et al. 2020).

Credit risk
Cortera holds a credit database that spans businesses of all types across the United States. We are
considering acquiring this data but it has not been obtained at date of writing and it is possible we
may not include it in the analysis given the limited temporal variation. Cortera matches data based
on business name and address, and was able to achieve an 87% match rate on a sample dataset of
200 businesses. Data are generated at the month level. The dataset includes a credit score, rating
of credit health, and predicted likelihood of severe delinquency over the next 12 months. In the
sample data, credit score information was matched for 76% of businesses.

Additional variables needed for analysis
Wewill merge in an indicator for whether the business received a grant or loan from the county over
the period under analysis using public datasets of business nameswho received county funding. This
data will primarily be used to assess whether there is differential receipt of county‐level grants by
treatment status.

Credit card transactions data
FromFACTEUSwe received anonymized data on individual consumer credit card transactionswithin
San Diego and surrounding suburban ZIP codes. This data came from FACTEUS’s U.S. Consumer
Card Payments and Gamma Payments databases. Transactions cover February 1, 2020 to July 31,
2020. The U.S. Consumer Card Payments data consists of 6,593,636 individual credit card transac‐
tions, while the Gamma Payments data consists of 1,041,097. The data lists the transaction amount
and timestamp, as well as business identifiers and the consumer’s date of birth and zip code.

We had originally intended to use this data in order to track the transaction performance of busi‐
nesses across time. Unfortunately, however, because the data focuses on the behavior of con‐
sumers, most businesses that do show up in the dataset show up only once. We describe an ex‐
ploratory analysis using this data below instead.

2.2 Internal application and review data
We have several sets of data reflecting the material businesses used to apply to the SBRF, as well
as decisions made by program staff. We have cleaned and transformed these into an “application
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dataset” that we use to construct treatment variables and to estimate propensities for the SOO
design. The specific list of variables used in that analysis is described in section B of the internal
(non‐public) appendix. These include the number of employees, location in an underserved area, self‐
reported revenue losses due to COVID, and the eligibility criteria advertised to applicants described
in the introduction.

2.3 Merging application and outcome data
To construct the analytic datasets described in the next section, it is necessary to merge the appli‐
cation dataset with the outcome datasets. The merge process is not complete at time of writing but
should work roughly as follows:

1. Yelp data: we use the Yelp business search API along with the business’s name (cleaned and
truncated to correspond with Yelp naming conventions) and its address. The API, for busi‐
nesses that match, returns a unique business identifier. The Yelp data includes businesses
matched through this process and businesses Yelp is able to fuzzy match (0 additional busi‐
nesses in the current analysis).

2. PACER data: we use fuzzy and exact matching to match businesses with cases in the PACER
data using business EIN, name, and address.

2.4 Transformations of data structure
We will transform the data into a panel and a cross‐sectional dataset. The panel data will be used
in the SOO design, while the cross‐sectional dataset will be used in the GRD design.

Construction of panel dataset
We will construct a business‐week panel. The panel should run from January 1 2020 to December
31 2020, and cover roughly 10,000 businesses.5

The dataset will include the following primary outcomes:

• #�MF`mTi+v: A binary indicator that is 1 if the business or business owner filed for any
bankruptcy chapter, commercial or consumer, on any day that week or prior, and 0 otherwise.
This is recorded in the PACER data.

• pB`im�Hnb2`pB+2b: A binary indicator that takes the value 1 if the business offered any “vir‐
tual services” according to Yelp any day of that week, and 0 otherwise. This includes both
enabling the virtual services banner, indicating remote services, and delivery through Grub‐
hub.

• /�vbn+HQb2/: The number of days during that week for which the business had a “temporarily
closed” or “permanently closed” flag on its Yelp page.

We will also include the following treatment variables and covariates:

• BMpBi�iBQMnr�p2: Categorical variable indicating date at which that business was invited to
submit funding. For those businesses never invited, date takes the value “never.”

• BMpBi2/: A binary indicator that is 1 if the business has been invited to submit documents for
review by that week, 0 otherwise.

5. In practice, the exact timespan of the panel may vary between outcomes depending on the time span we are able
to secure. At the time of plan posting, we do not know the full range of invitation dates. We may adjust the end date of
the panel period to make sure that it encompasses a long‐enough “post” period following the invitation.
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• r22FbnbBM+2nBMpBi�iBQM: A categorical variable used for fixed effects. For businesses ever
invited to submit documents, it takes negative values corresponding to the number of weeks
prior to the invitation, 0 on the week of, and positive numbers following that week. For busi‐
nesses never invited, it takes the value “never,” which is the reference category.

• 7mM/2/: Takes the value 1 whenever a) that business was actually funded and b) invited is
equal to 1. 0 otherwise.

• r22F: A categorical variable indicating the week.

• #mbBM2bb: A categorical variable serving as a unique business identifier.

To these variables, we will add additional covariates and the inverse propensity weights constructed
using methods described below.

Construction of cross‐sectional dataset
We create a cross‐sectional dataset by collapsing the panel into pre‐ and post‐treatment periods.
For the main analyses, we define the post‐treatment period as the first date at which a business
was notified of funding approval. In extensions, we will illustrate how GRD estimates change when
later and later subsets of the data are used for estimating outcomes, since many businesses were
not funded until the early fall.

The data will contain pre‐ and post‐treatment averages of the primary outcomes described above
(/�vbn�+iBp2, `2p2Mm2, #�MF`mTi+v, pB`im�Hnb2`pB+2b, and /�vbn+HQb2/).

We will also include the following treatment variables and covariates:

• BMpBi�iBQMnr�p2: Date at which that business was invited to submit funding. For those
businesses never invited, a date arbitrarily far in the future.

• BMpBi2/: A binary indicator that is 1 if the business was invited to submit documents for
review, 0 otherwise.

• 7mM/2/: A binary indicator that is 1 if the business was funded, 0 otherwise.

• #mbBM2bb: A categorical variable serving as a unique business identifier

• H�iBim/2 and HQM;Bim/2: Geocoordinates of the business used to define distance to the
boundary of the City of San Diego. Coded using street address and the iB/v;2Q+Q/2` and
;;K�T packages for _.

• BMna.: A binary indicator that takes the value 1 if the business is inside the SanDiego boundary
and 0 otherwise. Boundaries are defined using the same council geography shapefiles used
by program staff.

2.5 Data exclusion
Duplicates
Among the applications, 756 stem from businesses that appear to share the same name. A majority
owner or business was limited to one SBRF award. If the majority owner already received an award
in Phase 1, all other applications from that owner were deemed ineligible. The presence of multiple
applications for one business poses some issues for the analysis. From a causal inference perspec‐
tive, it is tempting to simply view these as taking two chances at getting funded rather than one. In
this case, we could treat businesses as clusters of applications, and adjust the propensities accord‐
ingly. However, this approach is complicated by the fact that reviewers filtered out many, though
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not all, of these duplicates. As such, we have adopted for a more nuanced approach that filters
applications down to one‐per‐business depending on which of the following kinds of duplicates to
which the application belongs:

1. N = 396/756. The business applied from the same location multiple times and only one made
it through to consideration in phase 3 (vast majority), or the same business applied from dif‐
ferent locations and program reviewers caught it and only let one through. We retain the
application that made it through in either case, since in such cases reviewers caught the du‐
plicate and did not pass it through to phase 3.

2. N = 237/756. The business applied from the same or different locations multiple times and
none made it through to consideration in phase 3. These applications will not be considered
in the main analysis. We may include them in any analyses using Phase 1 and Phase 2 data
however. We keep the most recent funded application or, if no application was funded, the
most recent application.

3. N = 45/756. The business applied from the same or multiple locations and had two differ‐
ent but noncontradictory treatment assignments in phase 3. For example, they were marked
as “unresponsive” and “withdrawn” for two different submittal numbers. In these cases, we
retain the most recent funded application or, if no application was funded, the most recent
application.

4. N = 35/756. The business applied from the same locationmultiple times and the statuses con‐
tradict for our purposes, in that they have the control status (“assigned but not engaged”) but
were also invited. We found a handful of slightly more difficult cases in which the addresses
were different, the name was the same, and one was invited and the other in control. This is
difficult because, in theory, these might be considered different businesses entirely. For the
sake of consistency, however, we treat businesses with different locations as one business. In
all such cases, the key point is that the business was assigned if it was ever invited, so we keep
the invited app. This does pose the issue of heterogeneous assignment probabilities, which
can lead to bias. But the number is small enough as not to provoke concern.

5. N = 41/756. Some businesses were awarded in a previous phase but were marked as “unre‐
sponsive.” in phase 3. In these cases, we mark the business as assigned to treatment and keep
them in the analysis. Helpfully, no business is in the control condition for phase 3 but funded
in an earlier phase.

6. N = 2/756. False duplicates, in which businesses have the same name but are from different
businesses: two different taxi drivers fall into this category. We give them different names
and keep both.

This process results in the removal of 411 duplicate applications from the data.

Restriction to analytic sample
In approach 1 (SOO), we consider only businesses that passed the initial eligibility screening for
phase 3 funding. For this phase, we have detailed information on application review and invitation
timing that is required for the analysis and unavailable for other phases. See Figure 1 for more
details.

In approach 2 (GRD), we consider all funding phases but will exclude any data that obviously does
not meet eligibility requirements except for the requirement that the business be located inside the
City of San Diego. The aim with this subsetting is to produce a sample whose businesses might
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have been eligible for funding had it not been for their spatial location, and thereby to reduce the
number of “never‐takers” in the sample (see below for formal definition).

2.6 Treatment of missing data
We distinguish between two types of missingness, each of which requires a slightly different ap‐
proach. First, there is the issue of data that exists in principle but, in practice, we are unable to
find a match. For example, whether or not a business had transactions occur on a given date in
principle exists for all businesses, including those that closed. However, a business may not show
up in our data. We call this “attrition.” Second, there is the issue of data that are missing for the
more fundamental reason that it is observed conditional on post‐treatment outcomes. For example,
the average amount of revenue on a given day will be undefined for businesses that ceased to exist.
We cannot define average treatment effect estimands for such outcomes for those businesses. We
call this “post‐treatment missingness.” Our approach to this issue is to define our outcomes such
that they do not depend on post‐treatment potential outcomes.

As concerns attrition, we know already that we will lack data on the outcomes of some substantial
proportion of businesses: at least 30% of the businesses appear to be unmatched to the Yelp data,
for example. It is conceivable that some businesses fail to match in ways that are correlated with
treatment. For example, if those who applied earliest put the least time into their applications and
therefore introduced more misspellings or messier address data that made it more difficult to match
them based on these fields. Similarly, if brick andmortar businesses were more likely to apply earlier
and also more likely to have Yelp accounts where they post hours, attrition might be correlated with
treatment status.

We describe our approach to this issue in Section A.1 of the technical appendix. Briefly, for each
design, we run a test for differential attrition for any outcome exhibiting missingness. If there is
evidence of differential attrition, we report the results of four robustness checks.

3 Statistical Models & Hypothesis Tests
3.1 Analysis 1: Selection on observables
The selection on observables (SOO) approach leverages the fact that, for phase 3 of the SBRF, we
have the same applicant data used by case reviewers to make initial determinations about whether
to award businesses. In principle, the aim is to reconstruct, using our qualitative understanding of
the award process gleaned from conversations with program staff and machine learning techniques,
each eligible business’s probability of being invited to submit documents for funding, both for busi‐
nesses that were and were not invited. These estimated probabilities can be used to construct
weights that allow us to treat the comparison of invited and non‐invited businesses as though it
were an experimental comparison.

We distinguish between an encouragement to submit further documents for funding—the business’s
“assignment” or “encouragement” to be treated—and actually receiving funds—the business’s treat‐
ment “status.” Specifically, let Z denote a binary variable indicating program staff invited a busi‐
ness to submit documents for funding and T a binary variable indicating the business was actually
awarded funds. The key distinction between these two variables is that we assume we can predict
the distribution of Z using the observable variables available to program staff, whereas T depends
on features of the world, U , beyond our ability to measure. We formalize the identification strategy
in section A.2 of the technical appendix.

The control group is composed of those who were never invited to submit documents for review—
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they fall into category 6 on Figure 1. That is, businesses in category 6 have Zi = 0 and Ti = 0,
and are a mix of compliers and never‐takers. In the treatment group, we can observe compliers
in category 4—they are businesses for whom Zi = 1 and Ti = 1. Never‐takers in the treatment
group are businesses who were invited but never received funding. These can be found in category
7—they have Zi = 1 and Ti = 0. Other businesses are excluded from the SOO analysis.

We suppose that there is some probability that business i is invited to submit documents for review,
Pr(Zi = 1) = πi, whichwe do not observe but can estimate using statisticalmodels to get propensity
scores, π̂i, because we have access to the same data used tomake invitation decisions. If π̂i is a good
estimator of πi, then we are able to estimate the average intent‐to‐treat effect by subtracting the
weighted average of uninvited businesses’ post‐treatment outcomes from the weighted average of
invited businesses’ post‐treatment outcomes, where BMpBi2/6 defines treatment and weights are
proportional to 1

π̂i
for invited businesses and 1

1−π̂i
for uninvited businesses.

The intent‐to‐treat (ITT) effect is defined as the average difference between what would have hap‐
pened in a world where all businesses were invited to submit documents (with some subsequently
funded and unfunded) and a counterfactual world in which they were not.7 Of course, a key ques‐
tion is not only what would happen if we could invite all businesses for funding, but also what
average change would occur specifically for the businesses who, when invited, would actually sub‐
mit documents, pass review, and be awarded funding. We refer to this in the formalization as the
complier average causal effect (CACE), and describe an additional set of assumptions necessary to
estimate it. Essentially, if an invitation to submit documents cannot decrease the likelihood a busi‐
ness is funded (monotonicity assumption), and if the only way that invitations affect outcomes like
revenue is through the actual funding that follows it (conditional excludability assumption), then we
can estimate the CACE by rescaling the ITT to account for the fact that many businesses invited to
submit documents for funding were never funded in fact.

Estimation strategy
Our identification strategy thus depends on estimating πi accurately using propensity scores, π̂i.
Broadly speaking, there are two families of approaches to propensity score estimation for causal
inference. The first seeks to reconstruct the treatment assignment process, while the second places
greater emphasis on producing balance on covariates. We take the first approach.

Many early studies that used estimated propensity scores to weight observational data employed lo‐
gistic regression: in a 2004 reviewofmedical papers, for example, all 48 of the reviewedmanuscripts
relied on some form of logistic regression (Weitzen et al. 2004). However, more recent studies have
illustrated substantial bias that can result from misspecification of the functional form: logistic re‐
gression, for example, relies on the assumption of linearity in the logit and accurate specification of
any higher order terms.

More recently, machine learning techniques such as neural networks, support vector machines, and
decision trees and forests have been employed to flexibly estimate propensity scoreswithout impos‐
ing such strong assumptions about the parametric distribution or functional form of the propensity.8

6. See Section 2.4.
7. As described in the formalization, the definition of this estimand relies on assumptions about the number of potential

outcomes businesses reveal as a result of the invitation decisions. In particular, we must assume the absence of spillovers
between business outcomes and funding statuses.
8. In particular, see Diamond and Sekhon 2012 for a discussion of the relative performance of a propensity scored

based on a generalized linear model and ones estimated using more flexible methods as we relax assumptions that the
features predict treatment status in a linear and additive way. In the present case, for instance, we know that submission
time may interact with whether the business is located in a prioritized area.
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While the different machine‐learning methods typically out‐perform logistic regression in terms of
bias, their relative performance is context‐specific. Pirracchio et al. 2014 argue that meta‐learning
techniques that combine the predictions of different algorithms perform at least as well as the best
choice among candidates. As such, they suggest using a combination ofmachine learning algorithms
to predict propensities, and then applying a meta‐learning algorithm to those predictions in order
to arrive at the final prediction. We use ensemble stacking to do so.

Our propensity model uses transformations of the raw data used by program staff to make determi‐
nations about whether to invite businesses to submit documents for funding, as depicted on Figure
1. See Section 2.2 above and Section B of the internal appendix for a description of the variables
employed in this analysis.

We fit the propensity score model using seven different machine‐learning methods:

1. Logistic regression (from ;HK package)

2. Random forests (from `�M/QK6Q`2bi package)

3. Support vector machines with a linear kernel (from 2RydR package)

4. Stochastic gradient boosting (from ;#K package)

5. Neural net (from MM2i package)

6. Decision tree (from `T�`i package)

The tuning and training of each method uses 5‐fold cross validation on 80% of the data selected
at random for training, with accuracy as the performance metric. We tune over five hyperparame‐
ters taken from the defaults in each software package. Finally, we take the predictions from these
methods and use them to create a stacked ensemble.

We ran the prediction models on the phase three review data as of September 17, 2020. Since the
review process is not yet finalized, this provides a preliminary view of howwell the propensitymodel
performs. We label businesses that either had a document folder URL or had a status that indicated
they were sent an email as “invited” (including those who were found ineligible after document
review) and any business that was flagged as yet to receive an email as “not invited.” We excluded
businesses found to be ineligible prior to any emails being sent.

Of all the models, the stacked ensemble performed the best. When trained on 80% of the data, it
correctly predicted 95% of the uninvited businesses and 95% of the uninvited businesses in the 20%
of the data held out for testing. Expressed in terms of accuracy, this works out to (172+664)/(172+
664 + 9 + 33) = 95%. We will estimate propensities using the model with the best accuracy score
on the final dataset.

To estimate the ITT and CACE as defined above, we will run weighted linear regressions with ro‐
bust standard errors clustered at the business‐level. Weights are constructed using the estimated
propensity scores as above. The p‐values constructed from the standard errors from regression
models will constitute our main test of the null hypothesis of no average effect. We will make no
adjustments for multiple comparisons.

To estimate the ITT averaged over all periods, we run a regression of the following form using
2biBK�i` for _:

HKn`Q#mbiU
7Q`KmH� 4 Qmi+QK2 � BMpBi2/-
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7Bt2/n2772+ib 4 � r22F Y #mbBM2bb-
b2nivT2 4 ]bi�i�]-
+Hmbi2`b 4 #mbBM2bb-
r2B;?ib 4 BTr-
/�i� 4 /7
V

The coefficient on BMpBi2/ thus identifies the ITT by estimating the inverse propensity‐weighted
average two‐period difference‐in‐difference for every business in the sample.

To estimate the CACE, we run the following weighted instrumental variables regression:

Bpn`Q#mbiU
7Q`KmH� 4 Qmi+QK2 � 7mM/2/ % BMpBi2/-
7Bt2/n2772+ib 4 � r22F Y #mbBM2bb-
b2nivT2 4 ]bi�i�]-
+Hmbi2`b 4 #mbBM2bb-
r2B;?ib 4 BTr-
/�i� 4 /7
V

The coefficient on 7mM/2/ thus identifies the CACE by estimating a two‐stage least squares regres‐
sion.

Extensions
Since businesses were funded at different times, averaging treatment effect estimates across all
periods likely attenuates our estimate of some of the shorter‐term impacts for funded businesses.
To address this attenuation issue, we take two approaches to estimating dynamic ITT effects and
CACEs.

The first simply estimates the ITT at each post‐treatment week:

HKn`Q#mbiU
7Q`KmH� 4 Qmi+QK2 � r22FbnbBM+2nBMpBi�iBQM-
7Bt2/n2772+ib 4 � r22F Y #mbBM2bb-
b2nivT2 4 ]bi�i�]-
+Hmbi2`b 4 #mbBM2bb-
r2B;?ib 4 BTr-
/�i� 4 /7
V

The second estimates the subgroup ITT for businesses invited to submit documents in the first week
of April:

HKn`Q#mbiU
7Q`KmH� 4 Qmi+QK2 � BMpBi2/-
7Bt2/n2772+ib 4 � r22F Y #mbBM2bb-
bm#b2i 4 BMpBi�iBQMnr�p2 44 ]�T`BH@R] % BMpBi�iBQMnr�p2 44 ]M2p2`]-
b2nivT2 4 ]bi�i�]-
+Hmbi2`b 4 #mbBM2bb-
r2B;?ib 4 BTr-
/�i� 4 /7
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V

Wewill run equivalent two‐stage least squares regressions for period‐ and subgroup‐specific CACEs.

Finally, we plan to run subgroup analyses to assess any differences in impact for low‐moderate
income business owners.

Robustness
As a robustness check on the main model, we will run a “doubly‐robust” estimator in which we
include the covariates used to estimate propensities in the models listed above. We will also report
a difference‐in‐differences model that uses T in the place of Z in the TWFE specification.

Wewill report how estimates changewhen employing different approaches other than themain one
used in order to estimate propensities. Finally, we will check for robustness to different approaches
to sample inclusion, such as including businesses that were reviewed in Phase 1 (this will involve
imputing to which businesses invitations were sent and the timing with which this was done, as we
do not have this information).

3.2 Analysis 2: Geographic regression discontinuity
In a typical, one‐dimensional regression discontinuity, researchers exploit the fact that the probabil‐
ity of being assigned to some treatment jumps discontinuously at some point along an underlying
covariate. The discontinuous point is usually called the “cutoff” and the underlying covariate is usu‐
ally called the “forcing variable.” In “sharp” RD designs, the probability of treatment jumps from
0 to 1, whereas in fuzzy RD designs there may be a mix of treated and untreated units on either
side of the discontinuity. Very often the running variable is correlated with outcomes, so that treat‐
ment assignment and outcomes are confounded. However, provided the outcomes are a continuous
function of the forcing variable, it is still possible to estimate an unbiased estimate of the average
treatment effect very close to the discontinuous cutoff.

Geographic regression discontinuity (GRD) designs extend the one‐dimensional RD design into a
two‐dimensional space. While it is tempting to simply compute the distance of each unit to the
nearest point on the border, and run a single, one‐dimensional RD with the distance signed positive
for treatment units and negative for control units, this one‐dimensional approach is prone to spatial
confounding that can produce bias. Figure 3, reproduced from Rischard et al. 2018, illustrates the
issue with this approach.
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Figure 3: Spatial confounding example from Rischard et al. 2018. The boundary is located at S2 = 0. The
left panel background shows the density of units, while the right panel shows the spatial trend in outcomes,
moving from high to low as one progresses from left to right. The average difference in outcomes at any point
on the border is zero. However, if one were to run a one‐dimensional RD with each point given a signed
distance to the nearest point on the border as the forcing variable, one would erroneously estimate a large
treatment effect. This bias occurs because treatment units happen to spatially cluster in an area with high
outcomes whereas control units are clustered in an area with low outcomes. This problem can be overcome
by estimating a two‐dimensional geographic regression discontinuity, in which the estimand is the average
difference in outcomes along the border.

A two‐dimensional GRD design overcomes the spatial confounding issue explained in the caption
to Figure 3 by estimating the causal effect along the length of the boundary separating treatment
from control units.

There are roughly three such approaches in the literature: 1) Keele and Titiunik 2015 apply a one‐
dimensional RD to a grid of points along the border then average across the resultant estimates; 2)
Keele et al. 2015 use matching on distance and covariates within a buffer distance to the border,
then analyze matched units as though they were in an RCT; 3) Rischard et al. 2018 fit outcomes to
a smooth surface, extrapolate to the border curve, then take pointwise difference between the two
extrapolations to estimate the treatment effect along the border.

We will use a modified version of the first approach. We eschew the second approach as the match‐
ing often requires discarding units that cannot be matched, which makes the estimand difficult to
define (we may include this as an exploratory analysis). Approach 3 is attractive but we forego using
this method as the estimator encounters difficulties when covariates are included due to the large
parameter space that is created (particularly with the covariance matrix). While one could conceiv‐
ably residualize outcomes, this can lead to anti‐conservative variance estimation (as the uncertainty
in computing residuals is typically hard to propagate through into the final model). Given the rich
set of covariates available, in particular pre‐treatment outcome data, we are reluctant to forego the
use of covariates.

We extend the first approach in two ways. First, we adopt a fuzzy approach to the discontinuity,
in which all units on the treatment (control) side of the border are assigned to treatment (control),
yet the proportion actually treated (untreated) is not 1. This allows for the definition of intent‐to‐
treat and complier border causal effects. Second, we include covariates in the estimation strategy
following Calonico et al. 2019.
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Estimation strategy
The estimands and identification strategy used to estimate them are formalized in section A.3 of
the technical appendix. Briefly stated, our estimation strategy involves extrapolating potential out‐
comes to a grid of points along the boundary between the inside and outside of San Diego.9 At
each point, we estimate the ITT and the CACE, then we take the population density weighted sum
of the estimates to estimate a scalar summary of the average ITT and CACE.

The map of units’ locations is provided on Figure 2. Any units that do not meet the eligibility criteria
(with the exception of spatial eligibility) will be removed from the sample, so that the estimation is
performed among units with prima facie eligibility. We will define a grid of R evenly spaced points
along the border. We will set R to a large number, such as 1000. At each point, we will use the
`/`Q#mbiUV function from the `/`Q#mbi package to perform local polynomial regression with a
triangular kernel. Specifically, we will estimate effects at each point in two different ways:

1. “Sharp” RDD of outcome on being “inside San Diego,” using pre‐treatment outcomes as co‐
variates;

2. “Fuzzy” RDD of outcome on being funded, using “inside San Diego” as running variable instru‐
ment and pre‐treatment outcomes as covariates;

We will calculate weighted averages of the R estimates obtained for each of the four estimation
methods, and bootstrap resample observations in order to estimate standard errors (e.g., using the
standard deviation of the bootstrap resampled distribution).

Extensions
A concern in both the SOO and GRD designs is that, because businesses were funded at different
times, averaging over all periods may attenuate estimates of funding effects. To address this issue,
we will also show how the estimates vary as the cross‐sectional dataset is constructed holding the
pre‐treatment date fixed and using ever later post‐treatment dates, excluding the data in‐between.

As mentioned above, we may also try the approach suggested in Keele et al. 2015, in which we
would match funded units on one side of the border to unfunded units on the other side, within a
buffer distance to the border, then analyze matched units as though they were in an RCT. This may
overcome issues that the main analysis faces with the density of points varying along the border.

Robustness
We will also estimate the main results without covariates.

3.3 Exploratory analyses
Analysis with FACTEUS data
As an additional exploratory analysis, we leverage consumer credit card transaction data from FAC‐
TEUS to assess the relationship between invitation status and small business outcomes. Due to
limitations in the way consumer spending data is collected by FACTEUS, the credit card transaction
data we obtained does not provide sufficient coverage to perform time series analysis at the level
of individual businesses. We instead aggregate to broad group levels using the BMpBi�iBQMnr�p2
variable defined above, which indicates whether and when a business received an invitation.

9. Businesses located in the City of Chula Vista were eligible for RLF funds. There were 551 applications from busi‐
nesses in the City of Chula Vista, and 8 were awarded. We still count these businesses as outside the City of San Diego,
and treat this an issue of two‐sided noncompliance.
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We used the R package 7�biGBMF to link consumer credit card transactions in the US Consumer
Spending and Gamma datasets provided by FACTEUS to small businesses that applied for funds
in San Diego. Businesses may fail to appear in the dataset because they: 1) were not visited
by a consumer covered by Facteus’ data collection methods; 2) do not ever transact using credit
cards; 3) closed. Thus, appearance in the dataset is itself an outcome. We therefore measure
the number of weekly transactions by applicant businesses, including a 0 for those not in the
dataset. From this business‐week‐level measure, we construct two weekly measures aggregated
to the BMpBi�iBQMnr�p2 level using the propensity weights described above, so that we have two
separate time‐series measures for the businesses that were and were not ever invited for funding.
The first is Mni`�Mb�+iBQMb, the count of all transactions in that week and invitation wave; and
�Mvni`�Mb�+iBQMb, the proportion of businesses for whom we record at least one transaction in a
given week in a given invitation wave.

To assess the effect of funding on these outcomes, we will conduct a difference‐in‐differences anal‐
ysis, in which the outcome is regressed on an indicator for whether the group is treated by that
week, as well as group and period specific indicators.

Heterogeneous effects of lockdown
It seems possible that receiving funding may have lessened the shock of lockdowns or enhanced
recovery during the period from mid May to the end of June when businesses were allowed to
reopen for in‐person service. As such, we intend to assess heterogeneity in effects by the a variable
recording whether a severe restriction in operations was applied during that week.

Between Feb. 1 and July 31, 2020, there are four general periods that are captured by this HQ+F/QrM
variable. These are: (1) a “pre‐lockdown” period from Feb. 1 to March 18; (2) a “1st lockdown”
period that runs from March 19, when an initial wave of lockdowns were imposed, to May 4; (3)
an “openings” period that began on May 5 and extended until June 31; (4) a “2nd lockdown” period
that began with a new wave of targeted lockdowns on specific counties, including San Diego.

Cost effectiveness
In an additional exploratory analysis, we may estimate the cost effectiveness of the loan and grant
programs that comprise the treatment. This will require identifying the funding source for each
loan/grant. Working with the administrative offices of each program, we will identify the systems
holding budget and expenditure data used to deliver these awards. A data request to capture dis‐
persed amounts as well as administrative costs of the program will be generated per agency budget
holder. When possible, interviews with program managers will be held to collect qualitative infor‐
mation about personnel time spent to review and monitor the grant/loan programs.

Results from the cost‐of‐program‐delivery analysis will enable another policy relevant cost analy‐
sis; estimating the overall budgetary impact these programs have on government. To understand
the macro‐budgetary impacts, it is necessary to measure avoided costs to government (costs not‐
incurred from usage of government programs for unemployed individuals) as well as the impact on
future government revenues (sales other taxes) collected from these businesses.

Firstly, an analysis may measure differences between treatment and control groups in usage of gov‐
ernment programs. This will require identification and tracking of outcomes for individual employ‐
ees rather than for the business as awhole.10 A key outcome to trackwill be unemployment benefits

10. This analysis is pre‐registered as exploratory because we currently only have identifiers for the (1) business and
(2) business owner, and do not have comprehensive identifiers for the business’ employees at the time of application or
award.
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utilized, which we hypothesize will be less for the treatment than the control group. Pulling from
administrative databases, usage (and cost) of welfare programs, including SNAP, Medicaid/CHIP,
TANF, and state/local programs such as emergency utility funds, will be analyzed. Finally, if the state
can provide access to tax records, this cost analysis will estimate differences in sales tax paid by busi‐
nesses over a 3 year window. Thus, to capture the macro‐budgetary impacts of such grants/loans,
an estimate of net budgetary cost to the government will be completed several years after grant
release.

Counterfactual business outcomes under different disbursement processes
In addition to the two sets of inferential analyses, which estimate the causal impact of invitations
to and actual receipt of funding, we will conduct an exploratory analysis to be outlined further
in a separate pre‐analysis plan that investigates hypothetical outcomes for SBRF applicants if the
program had been implemented differently. Here, we briefly preview.

The OES team recently released a report, “Increasing Access to Small Business Grant and Loan
Programs for Historically Underserved Groups”, that documents a variety of methods local agen‐
cies used to target funds to underserved groups like minority‐owned businesses, women‐owned
businesses, and businesses located in economically‐deprived areas. The SBRF program took one
approach—geocoding business locations and moving businesses more quickly through the first‐
come first‐served process if they were located in a high priority area (e.g., LMA)—while other ap‐
proaches included a points system that gave higher priority for any funding to businesses with cer‐
tain characteristics and lotteries with separate pools for businesses in and outside of underserved
areas.

Building on that report, we will analyze hypothetical outcomes for the SBRF application pool under
three example models:

1. Strict first‐come first‐served: if SBRF had not moved businesses up in the queue, what would
funding decisions for underserved groups look like?

2. Points system: if SBRF had given points to businesses for certain characteristics (tenure; rev‐
enue loss; LMA area), and then chosen businesses with the highest points values, what would
funding decisions for underserved groups look like?

3. Lottery: if SBRF had put all applicants in a lottery, what would funding decisions for under‐
served groups look like?
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Appendix
A Technical Appendix
A.1 Approach to attrition
We will run the following tests for any outcome that exhibits missingness:

1. Selection on Observables: We will conduct an F ‐test between two linear models, both of
which will be run using the same analytic sample and inverse propensity weighting scheme
as the main analyses, defined below. The first will regress an indicator for missingness on
the available pre‐treatment covariates used in the propensity prediction model. The second
will supplement the first with a treatment term, interacted with those covariates. The F ‐test
thus tests the null hypothesis that there is no differential attrition between the treatment and
control group.

2. Geographic RegressionDiscontinuity: Wewill run the same analysis using the same bootstrap
approach to standard errors as that used in the main analyses for the GRD design, except that
the outcome will be an indicator for missingness. The p‐value from this regression tests the
hypothesis that there is no discontinuity in the probability of attrition along the boundary.

When a test is statistically significant at the α ≤ .05 level, we will report the following additional
robustness analyses:

1. Poststratification: For both SOO and GRD, we use the same machine learning procedures
used to predict propensity of assignment to treatment in the SOO design to predict proba‐
bility of not attriting. Observed units are then weighted by the inverse of this propensity.
This results in the upweighting of units whose outcomes we are able to observe but whose
characteristics otherwise resemble those we do not observe. In the SOO design, where units
are already weighted by the inverse of propensity of the assigned condition, we will use the
multiple of the two weights.

2. Imputation: We will use `�M/QK6Q`2bi,,`7AKTmi2UV along with the covariates used in the
propensity score analysis to impute missing values and run the main analyses on the full, im‐
puted, dataset.

3. Trimming bounds: For the SOO design, we will apply Lee 2009 trimming bounds. Suppose,
for example, that there are more matches in the treatment than in the control group. In that
case, we define a proportion to be trimmed, Q. Let R1 denote the rate of missingness in
the treatment group and R0 that in control. Then Q = R1−R0

R1 . The approach requires an
assumption that the treatment exerts a monotonic effect on the missingness. In this example,
that means no unit would have failed to appear in the credit card transaction data if treated
and appeared if untreated. The upper bound on the treatment effect is obtained by removing
theQ% of units in the treatment with the lowest outcomes and estimating the effect as usual
on this subset. Ties will be broken at random. The lower bound on the treatment effect
is obtained by removing the Q% of units in the treatment with the highest outcomes and
estimating the effect as usual. If the imbalance in attrition runs in the opposite direction, the
oppositemonotonicity assumption is imposed and the trimming is applied to the control group.
Importantly, this approach does not necessarily bound the sample average treatment effect.
Instead, it bounds the sample average treatment effect for those whose appearance in the
credit card data is unaffected by assignment to treatment. It is unclear whether this approach
is feasible for the GRD analysis, so we do not plan to run it for the GRD design.
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4. Extreme‐value bounds: This approach involves imputing missing values using the extrema of
their support (Manski 1990), or using their most plausible extreme values. We will use the
minimum and maximum outcomes for the extreme value bound analysis.

A.2 Formalization of SOO Design
Definition of treatment and identifying assumptions
We can formalize this notion using DAG notation. Let X refer to the set of variables we have
available in the application datasets provided by San Diego, while U refers to features of the world
we are unable to observe, such as follow‐up documentation or information gleaned through phone
calls to businesses. Let Y denote the outcome in which we are interested, and ϵk an exogenous error
term for variable k. For the purposes of causal identification, our design assumes Z = fZ(X, ϵZ),
while T = fT (Z,X,U, ϵT ). In words, whether a business is selected for an invitation to submit
documents is a function of exogenous noise and of the data we are able to observe—businesses
are “selected on observables”—whereas their ability to actually receive funding is the outcome of
a process we cannot observe and that confounds a simple estimate of T on Y . However, even
if Y = fY (U,X,Z, T, ϵY ), we can estimate the effect of Z on Y simply by conditioning on the
confounder X . If, in addition, we can assume Y = fY (U,X, T, ϵY ) (an exclusion restriction defined
inmore detail below), we can also instrument for T usingZ in order to estimate the complier average
effect on Y , despite unobserved confounding by U . The DAG is presented on Figure 4.

T

UX

Z

Y

Received
funding

Unobserved
document review

and followup

Observed
application

data

Invited
to submit

documents

Business outcome

Figure 4: Theoretical assumptions behind the selection on observables design. Conditioning on X removes
all paths fromX to its descendants, leaving no backdoor paths from Z to Y . While T may be confounded by
the unobservable U , we can nevertheless instrument for T using Z to get the complier‐local effect of T on
Y .

In potential outcomes notation, let Yi denote the i’th business’s observed outcome, e.g., average
credit card activity on Monday of March 16 2020. And let Yi(Ti(Zi = z)) denote its potential
outcome when Ti takes the value it would take if Zi was set to z. For example, Yi(Ti(Zi = 1))might

3



represent the business’s average credit card activity onMonday of March 16 2020 if they were ever
invited to submit documents during the SBRF disbursement, and Yi(Ti(Zi = 0)) its average activity
on the same day in a different potential state of the world in which the business was not invited to
submit documentation for funding.

We invoke Stable Unit Treatment Value Assumptions (SUTVAs) according to which each business
reveals at most one of those two potential outcomes: Yi(Ti(Zi = 1)) or Yi(Ti(Zi = 0)). Let Z denote
a vector of invitations and Z′ denote a different vector of invitations. Formally, the SUTVA holds
that, if Zi = Z′

i, then Ti(Z) = Ti(Z′) and Yi(Ti(Z) = Yi(Ti(Z′)) for all i.11

As represented in the U → T relationship on Figure 4 some businesses in the sample who are
invited to submit documentation will and will not get funded, for reasons we cannot fully observe.
We can define four different types of outcomes to the invitation to funding “treatment.” Compliers
are businesses who are funded if and only if they are invited (Ti(Zi = 1, Ui = u) > Ti(Zi = 0, Ui =
u)). Never‐takers are businesses who do not ever receive funding, whether invited or not (Ti(Zi =
1, Ui = u) = Ti(Zi = 0, Ui = u) = 0). From the data, it is clear that there are no types who
receive SBRF funding without an invitation. Thus, we rule out the existence of two other types:
always‐takers (Ti(Zi = 1, Ui = u) = Ti(Zi = 0, Ui = u) = 1) and defiers ((Ti(Zi = 1, Ui = u) <
Ti(Zi = 0, Ui = u)). This amounts to a monotonicity assumption. Finally, as the DAG suggests, we
assume the exclusion restriction is satisfied. In potential outcomes, this implies: Yi(Ti = t, Zi =
z) = Yi(Ti = t, Zi = z′). In other words, changing the value of Zi makes no difference to outcomes
except insofar as it changes Ti. This assumption is implied on Figure 4 through the absence of an
edge pointing from Z to Y .

How can we identify compliers and never‐takers in the data? The control group is composed of
those who were never invited to submit documents for review—they fall into category 6 on Figure
1. That is, businesses in category 6 have Zi = 0 and Ti = 0, and are a mix of compliers and never‐
takers. In the treatment group, we can observe compliers in category 4—they are businesses for
whom Zi = 1 and Ti = 1. Never‐takers in the treatment group are businesses who were invited
but never received funding. These can be found in category 7—they have Zi = 1 and Ti = 0. Other
businesses are excluded.

Estimands and identification strategy
Under the SUTVAs enumerated above, we can define the intent‐to‐treat estimand, which describes
the average difference in potential outcomes when a business is or is not invited to submit funding:

τITT =
1

N

N∑

i

Yi(Ti(Zi = 1))− Yi(Ti(Zi = 0)).

The assumptions about Z and X encoded in the DAG above imply that the distribution of the po‐
tential outcomes is independent of Z if we condition on X :

{Yi(Ti(Zi = 1)), Yi(Ti(Zi = 0))} ⊥⊥ Zi | Xi.

Let πi = Pr(Zi = 1 | Xi = x) = E[Zi | Xi = x]. Since the potential outcomes are distributed
independently of Z conditional on X , following Hirano et al. 2003:

{Yi(Ti(Zi = 1)), Yi(Ti(Zi = 0))} ⊥⊥ Zi | πi.

11. It is worth noting that this assumption may not hold, particularly with regard to the possible spillovers between
funding that result from reallocations when one business refuses or accepts. This is an issue we plan to address in future.
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Under these assumptions, conditioning on the true treatment assignment probability, πi, would be
sufficient to balance the full joint distribution of covariates (Rosenbaum and Rubin 1983). However,
since we do not have access to πi, we must estimate it using π̂i, commonly known as the “propensity
score.” We can use the propensity score to construct inverse propensity weights:

wi =

⎧
⎪⎨

⎪⎩

1

π̂i
if Zi = 1

1

1− π̂i
if Zi = 0.

If the propensity score perfectly approximates the assignment probability (i.e., πi = π̂i for all i), then
in expectation across hypothetical repetitions of the random invitations to submit funding, Z:

E[µ̂Y (1)] = E[

∑
i:Zi=1 Yiwi∑
i:Zi=1wi

] =
1

N
Yi(Ti(Zi = 1)),

and
E[µ̂Y (0)] = E[

∑
i:Zi=0 Yiwi∑
i:Zi=0wi

] =
1

N
Yi(Ti(Zi = 0)).

From the additive property of expectations, it follows that

τITT = E[µ̂Y (1) − µ̂Y (0)].

Thus, we identify the ITT of Z on Y by estimating propensity scores and constructing weights.

Finally, we are interested in the average effect of the treatment on compliers (CACE):

τCACE =
1

NC

∑

i:T (1)>T (0)

Yi(Ti(Zi = 1))− Yi(Ti(Zi = 0)),

whereNC is the number of compliers in the sample. It is straightforward to show that, under mono‐
tonicity, τCACE can be rewritten as the ratio between τITT and the intent to treat effect of Z on
T . As such, we can used weighted two‐stage least squares as a consistent (albeit possibly biased)
estimator of the average effect of the treatment on compliers.

A.3 Formalization of GRD design
Definition of treatment and identifying assumptions
Weuse a quasi‐experimental framework to define theGRD. LetZ denote a binary variable indicating
eligibility for funding under SBRF, and T actually being awarded funds. Thus, Z is analogous to an
encouragement to take the treatment and T is the actual treatment status. Unlike an experiment, Z
is determined nonrandomly by the border, while T is an unobservable, endogenous function of Z .
We invoke a stable unit treatment value assumption (SUTVA), according to which each businesses’
outcomes and treatment status depend only on their individual treatment encouragement, and not
on any other units’ treatment encouragements. As such, each business reveals at most one of two
potential outcomes: Yi(Ti(Zi = 1)) or Yi(Ti(Zi = 0)). Let Z denote a vector of encouragements and
Z′ denote a different vector of encouragements. Formally, the SUTVA holds that, if Zi = Z′

i, then
Ti(Z) = Ti(Z′) and Yi(Ti(Z) = Yi(Ti(Z′)) for all i.12

12. It is worth noting that this assumption may not hold, particularly with regard to the possible spillovers between
funding that result from reallocations when one business refuses or accepts. This is an issue we plan to address in future.
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Following Keele and Titiunik 2015, the geographic location of any unit is given by two coordinates
in space, such as latitude and longitude, (Si1, Si2) = Si (see Figure 3). Treatment encouragement is
not random, but is a function of this score. Let A1 and A0 denote the sets of all points in space in
which units are encouraged to take the treatment or the control, respectively. Thus, Z(s) = 1 for
s ∈ A1, Z(s) = 0 for s ∈ A0, and any given business’s treatment encouragement can be written
Zi = Zi(Si) (the lowercase s indicates we are referring to a specific realization of the quasi random
or exogenous variable, S).

LetB denote the set of all boundary points, b, with b = (S1, S2) ∈ B. We assume that the conditional
expectation functions of the potential outcomes are continuous in s at all points b along the bound‐
ary separating A1 and A0. Formally, this assumption can be written lims→bE[Yi(Ti(Zi = 1)) | Si =
s] = E[Yi(Ti(Zi = 1)) | Si = b] and lims→bE[Yi(Ti(Zi = 0)) | Si = s] = E[Yi(Ti(Zi = 0)) | Si = b],
for all b ∈ B. In other words, as the outcomes of units when encouraged to take funding (not take
funding) approach the border, they converge to the outcome that would be realized exactly at the
boundary.

Finally, we define four types of responses to the treatment encouragement in the sample and mono‐
tonicity assumption. As above, although defined over conceptually distinct variables: compliers are
those for whom Ti(Zi = 1) > Ti(Zi = 0)—they get funding when inside the San Diego boundary but
don’t get funding when outside of it. Never‐takers never get funding (Ti(Zi = 1) = Ti(Zi = 0) = 0)
and always‐takers always get funding (Ti(Zi = 1) = Ti(Zi = 0) = 1), irrespective of their loca‐
tion inside or outside San Diego. Finally, defiers get funding but only when outside San Diego:
Ti(Zi = 1) < Ti(Zi = 0). This is very difficult to imagine, and we assume that such defiers do not
exist, so that Ti cannot be decreasing in Zi.

Estimands and identification strategy
These assumptions allow us to define and identify two main estimands. First, define the intent‐to‐
treat effect (ITT) evaluated at a single point along the boundary as:

τITT (b) = E[Yi(Ti(Zi = 1))− Yi(Ti(Zi = 0)) | Si = b].

In words, this is the expected difference, at point b along the border, between the outcome of all
units when encouraged and not encouraged to be funded through SBRF. Under the assumptions
enumerated above, τITT (b) can be expressed in terms of observable data using the following equal‐
ity (Keele and Titiunik 2015):

τITT (b) = lim
s1→b

E[Yi | Si = s1]− lim
s0→b

E[Yi | Si = s0],

where s1 ∈ A1 and s0 ∈ A0. With this ability to define, conceptually and empirically, a treatment
effect at any point in the border, we can define a scalar‐valued average effect like the population
density‐weighted mean integral of the intent‐to‐treat effects along the border. This can be approx‐
imated using the weighted sum along a finite grid of border points indexed r ∈ {1, ..., R} (Rischard
et al. 2018):

τITT =

∫

s∈B
τ(s)f(s | S ∈ B)ds ≈

∑R
r=1wB(br)τITT (br)∑R

r=1wB(br)
,

where wB(b) is the local population density at point b and is set to approximate f(). In words,
τITT is the effect of the encouragement among the hypothetical population residing right on the
border. Conversely, if the border passes through lakes, parks, or other areas with no businesses in
the sample, differences in outcomes there are given little to no weight.
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Second, we define the complier average causal effect (CACE) at a point along the border as:

τCACE(b) = E[Yi(Ti = 1)− Yi(Ti = 0) | Si = b, Ti(1) > Ti(0)].

Under the monotonicity assumptions spelled out above, we can estimate τCACE(b) using the fol‐
lowing observable quantities (Imbens and Lemieux 2008):

τCACE(b) =
lims1→bE[Yi | Si = s1]− lims0→bE[Yi | Si = s0]
lims1→bE[Ti | Si = s1]− lims0→bE[Ti | Si = s0] ,

which is just the familiar instrumental variables ratio estimator applied to a specific point on the
border. The population density weighted mean integral of the CACEs along the border, τCACE , can
be approximated as above: by taking a populationweighted sumof τCACE(br), the CACEs estimated
at a grid of points along the border.
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